Gunter, Jason

From:

James, Kevin <kjames@doerun.com>

Sent:

Monday, April 13, 2015 10:25 AM

To:

Gunter, Jason

Cc:

Yingling, Mark; Neaville, Chris; Montgomery, Michael; 'brandon.wiles@dnr.mo.gov'; 'Ty Morris

(TMorris@barr.com)'

Subject:

Rivermines Progress Report - March

Attachments:

removed.txt; Rivermines_ProgressReport_03-15.pdf; 2015-03-12 RM NPDES Pace Lab

Report.pdf; Remediation Air Report - February 2015.pdf

Jason -

Attached is the March Progress Report for the Rivermines Site.

Best regards,

Kevin James

Kevin James

Construction Engineering W: 573.626.2096 C: 573.247.6766

This message is intended solely for the designated recipient and may contain confidential, privileged or proprietary information. If you have received it in error, please notify the sender immediately and delete the original and any copy or printout. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of The Doe Run Company. Finally, the recipient should check this message and any attachments for the presence of viruses or malware. The Doe Run Company accepts no liability for any loss or damage caused through the transmission of this e-mail.

OTOR

40484565 Superfund

4,2

01102

Remediation Group

Kevin James Construction Engineering Manager kjames@doerun.com

April 13, 2015

Mr. Jason Gunter Remedial Project Manager U.S. Environmental Protection Agency Region 7 - Superfund Branch 11201 Renner Blvd. Lenexa, KS 66219

Re: The Doe Run Company - Elvins/Rivermines Mine Tailings Site Monthly Progress Report

Dear Mr. Gunter:

As required by Article VI, Section 56 of the Unilateral Administrative Order (UAO) (CERCLA-07-2005-0169) for the referenced project and on behalf of The Doe Run Company, the progress report for the period March 1, 2015 through March 31, 2015 is enclosed. If you have any questions or comments, please call me at 573-626-2096.

Sincerely,

Kevin James

Construction Engineering Manager

Enclosures

c: Mark Yingling – TDRC (electronic only) Chris Neaville – TDRC (electronic only)

Michael Montgomery – TDRC (electronic only)

Brandon Wiles - MDNR

Ty Morris – Barr Engineering

Elvins/Rivermines Mine Tailings Site

Park Hills, Missouri

Removal Action - Monthly Progress Report

Period: March 1, 2015 - March 31, 2015

1. Actions Performed and Problems Encountered This Period:

a. During this period, vandalism occurred on the seepage pond and the roughing filter. Due to this, no flow was discharged into the pilot test or west treatment cell.

2. Analytical Data and Results Received This Period:

- a. During this period, water samples were collected from just upstream of Old Missouri Highway 32, as well as from upstream and downstream of the confluence of the site discharge with Flat River. The analytical results for this event are included with this progress report.
- b. During this period, the ambient air monitoring samples for February were processed and the Ambient Air Monitoring Report for February 2015 was completed and is attached. A copy of the Ambient Air Monitoring Report for February is attached.

3. Developments Anticipated and Work Scheduled for Next Period:

- a. Complete monthly water sampling activities as described in the Removal Action Work Plan.
- b. Complete air monitoring activities as described in the Removal Action Work Plan.
- c. Continue developing the Post-Removal Site Control Plan.

4. Changes in Personnel:

a. None.

5. Issues or Problems Arising This Period:

a. None.

6. Resolution of Issues or Problems Arising This Period:

a. None.

March 20, 2015

Amy Sanders The Doe Run Company P. O. Box 500 Viburnum, MO 65566

RE: Project: NPDES (RIVERMINES)

Pace Project No.: 60189646

Dear Amy Sanders:

Enclosed are the analytical results for sample(s) received by the laboratory on March 13, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church

jamie.church@pacelabs.com

Project Manager

(Jame Chank

Enclosures

CERTIFICATIONS

Project:

NPDES (RIVERMINES)

Pace Project No.:

60189646

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219
9608 Loiret Boulevard, Lenexa, KS 66219
WY STR Certification #: 2456.01
Arkansas Certification #: 13-012-0
Illinois Certification #: 003097
Iowa Certification #: 118
Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

SAMPLE SUMMARY

Project:

NPDES (RIVERMINES)

Pace Project No.: 60189646

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60189646001	29121 / RIVERMINES DOWNSTREAM	Water	03/12/15 11:41	03/13/15 08:35
60189646002	29122 / RIVERMINES UPSTREAM	Water	03/12/15 11:27	03/13/15 08:35
60189646003	29123 / RIVERMINES 001	Water	03/12/15 11:14	03/13/15 08:35

SAMPLE ANALYTE COUNT

Project:

NPDES (RIVERMINES)

Pace Project No.: 60189646

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60189646001	29121 / RIVERMINES DOWNSTREAM 29122 / RIVERMINES UPSTREAM	EPA 200.7	JGP	6	PASI-K
		EPA 200.7	SMW	3	PASI-K
		SM 2540D	JMC1	1	PASI-K
		EPA 300.0	OL	1	PASI-K
60189646002	29122 / RIVERMINES UPSTREAM	EPA 200.7	JGP	6	PASI-K
		EPA 200.7	SMW	3	PASI-K
		SM 2540D	JMC1	1	PASI-K
		EPA 300.0	OL	1	PASI-K
60189646003	29123 / RIVERMINES 001	EPA 200.7	JGP	3	PASI-K
		SM 2540D	JMC1	1	PASI-K
		SM 2540F	JMC1	1	PASI-K
		EPA 300.0	OL	1	PASI-K

ANALYTICAL RESULTS

Project:

NPDES (RIVERMINES)

Pace Project No.: 60189646

Date: 03/20/2015 02:26 PM

Sample: 29121 / RIVERMINES DOWNSTREAM	Lab ID:	60189646001	Collecte	d: 03/12/1	5 11:41	Received: 03/	13/15 08:35 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	200.7 Prepa	aration Meth	nod: EP	A 200.7			
Cadmium	0.79J	ug/L	5.0	0.56	1	03/17/15 16:05	03/19/15 10:21	7440-43-9	
Calcium	26000	ug/L	100	7.8	1	03/17/15 16:05	03/19/15 10:21	7440-70-2	
Lead	2.7J	ug/L	5.0	2.2	1	03/17/15 16:05	03/19/15 10:21	7439-92-1	
Magnesium	14300	ug/L	50.0	17.0	1	03/17/15 16:05	03/19/15 10:21	7439-95-4	
Total Hardness by 2340B	124000	ug/L	500		1	03/17/15 16:05	03/19/15 10:21		
Zinc	124	ug/L	50.0	12.5	1	03/17/15 16:05	03/19/15 10:21	7440-66-6	
200.7 Metals, Dissolved (LF)	Analytical	Method: EPA 2	200.7 Prepa	aration Meth	nod: EP	A 200.7			
Cadmium, Dissolved	ND	ug/L	5.0	0.56	1	03/17/15 16:05	03/19/15 11:57	7440-43-9	
Lead, Dissolved	ND	ug/L	5.0	2.2	1	03/17/15 16:05	03/19/15 11:57	7439-92-1	
Zinc, Dissolved	88.7	ug/L	50.0	12.5	1	03/17/15 16:05	03/19/15 11:57	7440-66-6	
2540D Total Suspended Solids	Analytical	Method: SM 2	540D						
Total Suspended Solids	8.0	mg/L	5.0	5.0	1		03/18/15 09:42		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	300.0						
Sulfate	27.6	mg/L	2.0	0.47	2		03/15/15 13:54	14808-79-8	

ANALYTICAL RESULTS

Project:

NPDES (RIVERMINES)

Pace Project No.:

Date: 03/20/2015 02:26 PM

60189646

Sample: 29122 / RIVERMINES Lab ID: 60189646002 Collected: 03/12/15 11:27 Received: 03/13/15 08:35 Matrix: Water

UPSTREAM			- 00001.0	u. 00, 12, 11	,		10,10 00.00		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EP	4 200.7 Prepa	aration Meth	nod: EF	PA 200.7			
Cadmium	ND	ug/L	5.0	0.56	1	03/17/15 16:05	03/19/15 10:23	7440-43-9	
Calcium	23800	ug/L	100	7.8	1	03/17/15 16:05	03/19/15 10:23	7440-70-2	
Lead	ND	ug/L	5.0	2.2	1	03/17/15 16:05	03/19/15 10:23	7439-92-1	
Magnesium	13900	ug/L	50.0	17.0	1	03/17/15 16:05	03/19/15 10:23	7439-95-4	
Total Hardness by 2340B	117000	ug/L	500		1	03/17/15 16:05	03/19/15 10:23		
Zinc	ND	ug/L	50.0	12.5	1	03/17/15 16:05	03/19/15 10:23	7440-66-6	
200.7 Metals, Dissolved (LF)	Analytical	Method: EP	4 200.7 Prepa	aration Meth	nod: EF	PA 200.7			
Cadmium, Dissolved	ND	ug/L	5.0	0.56	1	03/17/15 16:05	03/19/15 12:07	7440-43-9	
Lead, Dissolved	ND	ug/L	5.0	2.2	1	03/17/15 16:05	03/19/15 12:07	7439-92-1	
Zinc, Dissolved	ND	ug/L	50.0	12.5	1	03/17/15 16:05	03/19/15 12:07	7440-66-6	
2540D Total Suspended Solids	Analytical	Method: SM	2540D						
Total Suspended Solids	ND	mg/L	5.0	5.0	1		03/19/15 10:25		
300.0 IC Anions 28 Days	Analytical	Method: EPA	A 300.0						
Sulfate	18.9	mg/L	2.0	0.47	2		03/15/15 14:08	14808-79-8	

ANALYTICAL RESULTS

Project:

NPDES (RIVERMINES)

Pace Project No.: 60189646

Date: 03/20/2015 02:26 PM

Sample: 29123 / RIVERMINES 001	Lab ID:	60189646003	Collected	d: 03/12/1	5 11:14	Received: 03/	13/15 08:35 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Metl	hod: EP	A 200.7	-	-	
Cadmium	16.5	ug/L	5.0	0.56	1	03/13/15 16:15	03/16/15 16:40	7440-43-9	
Lead	36.3	ug/L	5.0	2.2	1	03/13/15 16:15	03/16/15 16:40	7439-92-1	
Zinc	12600	ug/L	50.0	12.5	1	03/13/15 16:15	03/16/15 16:40	7440-66-6	
2540D Total Suspended Solids	Analytical	Method: SM 25	540D						
Total Suspended Solids	7.0	mg/L	5.0	5.0	1		03/19/15 10:25		
2540F Total Settleable Solids	Analytical	Method: SM 25	540F						
Total Settleable Solids	ND	mL∕L/hr	0.20	0.20	1		03/13/15 12:30		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Sulfate	736	mg/L	50.0	11.8	50		03/15/15 14:51	14808-79-8	

Project:

NPDES (RIVERMINES)

Pace Project No.:

60189646

QC Batch:

Cadmium Lead Zinc

MPRP/31058

Analysis Method:

EPA 200.7

QC Batch Method:

EPA 200.7

Analysis Description:

200.7 Metals, Total

Associated Lab Samples:

METHOD BLANK: 1533346

Matrix: Water

Associated Lab Samples: 60189646003

Date: 03/20/2015 02:26 PM

60189646003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
	ug/L	ND	5.0	03/16/15 16:22	
	ug/L	ND	5.0	03/16/15 16:22	
	ua/L	ND	50.0	03/16/15 16:22	

LABORATORY CONTROL SAMPLE: 1533347

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Cadmium	ug/L	1000	953	95	85-115	
Lead	ug/L	1000	933	93	85-115	
Zinc	ug/L	1000	993	99	85-115	

MATRIX SPIKE SAMPLE:	1533348						
		60189657001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	ug/L	ND	1000	957	96	70-130	
Lead	ug/L	ND	1000	904	90	70-130	
Zinc	ug/L	ND	1000	956	92	70-130	

MATRIX SPIKE SAMPLE:	1533349						
Parameter	Units	60189523001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Cadmium	ug/L	7.3	1000	956	95	70-130	
Lead	ug/L	37.4	1000	913	88	70-130	
Zinc	ug/L	ND	1000	909	91	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

NPDES (RIVERMINES)

Pace Project No.:

60189646

QC Batch:

MPRP/31088

Analysis Method:

EPA 200.7

QC Batch Method:

EPA 200.7

Analysis Description:

200.7 Metals, Total

Associated Lab Samples:

ples: 60189646001, 60189646002

METHOD BLANK: 1534585

Date: 03/20/2015 02:26 PM

1534585

Matrix: Water

Associated Lab Samples: 601

60189646001, 60189646002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Cadmium	ug/L	ND ND	5.0	03/19/15 10:10	
Calcium	ug/L	ND	100	03/19/15 10:10	
Lead	ug/L	ND	5.0	03/19/15 10:10	
Magnesium	ug/L	ND	50.0	03/19/15 10:10	
Total Hardness by 2340B	ug/L	ND	500	03/19/15 10:10	
Zinc	ug/L	ND	50.0	03/19/15 10:10	

LABORATORY CONTROL SAMPLE:	1534586					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium	ug/L	1000	1020	102	85-115	
Calcium	ug/L	10000	9860	99	85-115	
Lead	ug/L	1000	1040	104	85-115	
Magnesium	ug/L	10000	9740	97	85-115	
Total Hardness by 2340B	ug/L		64700			
Zinc	ug/L	1000	1000	100	85-115	

MATRIX SPIKE & MATRIX SF	IKE DUPLIC	CATE: 153458	87		1534588							
Parameter	Units	60189644001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Cadmium	ug/L	ND.	1000	1000	1020	1040	102	104	70-130		20	
Calcium	ug/L	102000	10000	10000	112000	114000	108	125	70-130	2	20	
Lead	ug/L	7.5	1000	1000	1010	1020	100	102	70-130	2	20	
Magnesium	ug/L	52600	10000	10000	62200	64000	96	114	70-130	3	20	
Total Hardness by 2340B	ug/L	470000			536000	548000				2		
Zinc	ug/L	167	1000	1000	1130	1150	97	98	70-130	1	20	

Project:

NPDES (RIVERMINES)

Pace Project No.:

60189646

QC Batch:

MPRP/31095

Analysis Method:

EPA 200.7

QC Batch Method:

EPA 200.7

Analysis Description:

200.7 Metals, Dissolved

Associated Lab Samples:

METHOD BLANK: 1534713

60189646001, 60189646002

Matrix: Water

Associated Lab Samples:

Date: 03/20/2015 02:26 PM

60189646001, 60189646002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Cadmium, Dissolved	ug/L	ND ND	5.0	03/19/15 11:50	
Lead, Dissolved	ug/L	ND	5.0	03/19/15 11:50	
Zinc, Dissolved	ug/L	ND	50.0	03/19/15 11:50	

LABORATORY CONTROL SAMPLE:	1534714					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium, Dissolved	ug/L	1000	1030	103	85-115	
Lead, Dissolved	ug/L	1000	985	99	85-115	
Zinc, Dissolved	ug/L	1000	959	96	85-115	

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	ATE: 15347	15		1534716							
	6	0189646001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qual
Cadmium, Dissolved	ug/L	ND	1000	1000	862	1010	86	101	70-130	16	20	
Lead, Dissolved	ug/L	ND	1000	1000	819	957	82	96	70-130	16	20	
Zinc, Dissolved	ug/L	88.7	1000	1000	874	1030	79	94	70-130	16	20	

Project:

NPDES (RIVERMINES)

Pace Project No.:

60189646

QC Batch:

WET/53566

Analysis Method:

SM 2540D

QC Batch Method: SM 2540D

Parameter

Parameter

Analysis Description:

2540D Total Suspended Solids

Associated Lab Samples: 60189646001

METHOD BLANK: 1534851

Matrix: Water

Associated Lab Samples: 60189646001

> Blank Result

Reporting Limit

Analyzed

Qualifiers

Total Suspended Solids

Units mg/L

ND

5.0 03/18/15 09:37

SAMPLE DUPLICATE: 1534852

60189615001 Dup Result Result

RPD

Max **RPD**

Qualifiers

Total Suspended Solids

Units mg/L

45.0

47.0

SAMPLE DUPLICATE: 1534853

Date: 03/20/2015 02:26 PM

Parameter

Units

60189597003 Result

Dup Result RPD

11

Max **RPD**

Qualifiers

Total Suspended Solids mg/L 223

200

10 D6

10

Project:

NPDES (RIVERMINES)

Pace Project No.:

60189646

QC Batch:

WET/53595

Parameter

Parameter

Parameter

Analysis Method:

SM 2540D

QC Batch Method:

SM 2540D

Analysis Description:

2540D Total Suspended Solids

Associated Lab Samples:

METHOD BLANK: 1535521

Matrix: Water

Associated Lab Samples:

60189646002, 60189646003

60189646002, 60189646003

Blank Result Reporting Limit

Analyzed

Qualifiers

Total Suspended Solids

Units mg/L

ND

03/19/15 10:24 5.0

SAMPLE DUPLICATE: 1535522

60189662003 Result

Dup Result

RPD

Max RPD

Qualifiers

Total Suspended Solids

Units mg/L

ND

ND

8.0

10

SAMPLE DUPLICATE: 1535523

60189662008 Result

Dup Result

RPD

Max RPD

Qualifiers

Total Suspended Solids

Date: 03/20/2015 02:26 PM

Units mg/L

6.0

29

10 D6

Project:

NPDES (RIVERMINES)

Pace Project No.:

60189646

QC Batch:

WETA/33200

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Analysis Description:

300.0 IC Anions

Associated Lab Samples:

60189646001, 60189646002, 60189646003

METHOD BLANK: 1533811

Matrix: Water

Associated Lab Samples:

60189646001, 60189646002, 60189646003

Blank

Reporting

Parameter

Result

Limit

Analyzed

Qualifiers

Sulfate

Units mg/L

ND

MSD

Spike

Conc.

1360

25

1.0 03/15/15 11:07

LABORATORY CONTROL SAMPLE: 1533812

Parameter

Spike

MS

Spike

Conc

LCS Result

LCS % Rec

MSD

Result

98

% Rec Limits

Sulfate

Sulfate

Sulfate

Units mg/L

60189645001

Units

mg/L

Result

Conc. 5

90-110

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

1533813

70.3

1533814

Result

95.4

4.9

M\$

MS

% Rec

101

MSD % Rec

105

Max RPD RPD Qual 15

MATRIX SPIKE SAMPLE:

Date: 03/20/2015 02:26 PM

Parameter

Parameter

Units

mg/L

1533815

60189588002 Result

25

Spike Conc.

500

MS Result

1890

95.1

MS % Rec % Rec Limits

80-120

% Rec

Limits

80-120

Qualifiers

QUALIFIERS

Project:

NPDES (RIVERMINES)

Pace Project No.:

60189646

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit,

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

Date: 03/20/2015 02:26 PM

D6 The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:

NPDES (RIVERMINES)

Pace Project No.:

60189646

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60189646001	29121 / RIVERMINES DOWNSTREAM	EPA 200.7	MPRP/31088	EPA 200.7	ICP/23164
60189646002	29122 / RIVERMINES UPSTREAM	EPA 200.7	MPRP/31088	EPA 200.7	ICP/23164
60189646003	29123 / RIVERMINES 001	EPA 200.7	MPRP/31058	EPA 200.7	ICP/23144
60189646001	29121 / RIVERMINES DOWNSTREAM	EPA 200.7	MPRP/31095	EPA 200.7	ICP/23163
60189646002	29122 / RIVERMINES UPSTREAM	EPA 200.7	MPRP/31095	EPA 200.7	ICP/23163
60189646001	29121 / RIVERMINES DOWNSTREAM	SM 2540D	WET/53566		
60189646002	29122 / RIVERMINES UPSTREAM	SM 2540D	WET/53595		
60189646003	29123 / RIVERMINES 001	SM 2540D	WET/53595		
60189646003	29123 / RIVERMINES 001	SM 2540F	WET/53499		
60189646001	29121 / RIVERMINES DOWNSTREAM	EPA 300.0	WETA/33200		
60189646002	29122 / RIVERMINES UPSTREAM	EPA 300.0	WETA/33200		
60189646003	29123 / RIVERMINES 001	EPA 300.0	WETA/33200		

Sample Condition Upon Receipt

Client Name: Doe Ran				Optional
Courier: FedEx A UPS UPS UIA Clay	PEX 🗆 EC		Pace □ Other □ Client □	Proj Due Date:
Tracking #: 7731 0920 2610	Pace Shipping	Label U	Ised? Yes □ No □	Proj Name:
Custody Seal on Cooler/Box Present: Yes Ø 1	No □ Seals int	act: Y		
Packing Material: Bubble Wrap □ Bubble	Bags □	Foam I	□ None □ Other 181	elle
Thermometer Used: T-239 T-194	Type of Ice: W		ue None Samples received or	ice, cooling process has begun.
Cooler Temperature: 5,5		(CIFCIE		ils of person examining
Temperature should be above freezing to 6°C			J J	0 3/12
Chain of Custody present:	Yes No	□N/A	1.	
Chain of Custody filled out:	▼Yes □No	□N/A	2.	
Chain of Custody relinquished:	 E Yes □ No	□N/A	3,	
Sampler name & signature on COC:	∭aYes □No	□N/A	4.	
Samples arrived within holding time:	IXYes □No	□N/A	5.	
Short Hold Time analyses (<72hr):	ØYes □No	□N/A	6. Sett Solids	
Rush Turn Around Time requested:	□Yes KNo	□N/A	7.	
Sufficient volume:	MYes □No	□N/A	8.	
Correct containers used:	r Yes □No	□N/A		
Pace containers used:	MYes □No	□N/A	9.	
Containers intact:	IEYes □No	□N/A	10.	
Unpreserved 5035A soils frozen w/in 48hrs?	□Yes □No	BC N/A	11.	
Filtered volume received for dissolved tests?	□Yes □No	IN/A	12.	
Sample labels match COC:	M Yes □No	□N/A		
Includes date/time/ID/analyses Matrix:	WT		13.	
All containers needing preservation have been checked.	∰Yes □No	□N/A		
All containers needing preservation are found to be in compliance with EPA recommendation.	M Yes □No	□N/A	14.	
Exceptions: VOA, Coliform, O&G, WI-DRO (water)	□Yes B No		Initial when Lot	# of added servative
Trip Blank present:		IK N/A	Lompleted pre-	SIVALIVE
Pace Trip Blank lot # (if purchased):	2100 2110	DE314//1	15,	
Headspace in VOA vials (>6mm):	□Yes □No	IK N/A		
			16.	
Project sampled in USDA Regulated Area:	□Yes □No	ØN/A	17. List State:	
the material and the second of	y COC to Client?	Y /		Y / N
Person Contacted:	Date/Time:			
Comments/ Resolution:	Date/ Hille.			
Jami Church			3/13/15	
Project Manager Review:			Date:	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Section B Section C Section A Required Client Information: Required Project Information: Invoice Information: Report To: Amy Sanders Attention: Company: The Doe Run Company **Amy Sanders** 1 of 1 Page: REGULATORY AGENCY Address: PO Box 500 Copy To: Company Name: The Doe Run Company Address: **GROUND WATER** PO Box 500, Viburnum, MO 6556 NPDES F Page Quote Purchase Order No.: IT UST -RCRA Email To: asanders@doerun.com teterence COC#: 1684 60189646 Page Project Phone: (573) 689-4535 Fax: (573) 244-8179 Project Name: NPDES (Rivermines) Site Location MO Manager.
Pace Profile # STATE: Requested Due Date/TAT: 5 To 7 Days Project Number. Requested Analysis Filtered (Y/N) Section C Bottles / Preservatives COLLECTED DATE/TIME Valid Matrix Codes Required Sample Information CODE WT WW SL MATRIX AMPLE TEMP AT COLLECTION
THEIR # OF CONTAINERS
O ML Unpreserved
O ML Unpreserved
L Unpreserved
O ML White
O ML White
O ML Amber Glass H₂SO₄ COMPOSITE END / *See Additional Comments Below WATER WASTE WATER SOL/SOLID COMPOSITE START GRAB o mL Plastic H₂SO₄ on mL Amber HCL o mL ZnAc/NaOH o mL Amber Glass H SAMPLE ID MATRIX CODE SAMPLE TYPE ((A-Z, 0-9/,-) Analysis Test Sample IDs MUST BE UNIQUE TEM TIME DATE DATE (Military) CD-D, PB-D, ZN-D, HARD, SO4, CD-T, PB-T, TSS-T, ZN-T BPSW Rivermines Downstrea WT G 03/12/15 13/24 1 29121 2 CD-D, PB-D, ZN-D, HARD, SO4, CD-T, PB-T, TSS-T, ZN-T Rivermines Upstream WT G 03/12/15 3 29122 4 ws SO4, SS, TSS, CD-T, PB-T, ZN-T Rivermines 001 BPILL 03/12/15 WT G 5 29123 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 SAMPLE CONDITIONS DATE ACCEPTED BY / AFFILIATION ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE 0335 3/12/15 3/13 SAMPLER NAME AND SIGNATURE DR in SU Custody saled Coo (Y/N) PRINT Name of SAMPLER: Cory Woodruff DATE Signed SIGNATURE of SAMPLER: 3/12/15

Monthly Ambient Air Monitoring Report

The Doe Run Company
Old Lead Belt Sites:
Federal, Rivermines, National, and Leadwood

February-2015

SUITE 300 1801 PARK 270 DRIVE ST. LOUIS, MO 63146

Federal Site

Sample Results for February-2015

	St. Joe (F	St. Joe (Ballfields) Big River#4		iver#4	Pla	reatment ant
Sample Date	TSP	Lead ug/m3	TSP ug/m3	Lead ug/m3	TSP ug/m3	Lead ug/m3
Sample Date	ug/m3	0.007	12	0.006	8	0.007
2/2/15	12	0.007	8	0.006	14	0.007
2/3/15		Angeles and the second second	11	0.000	18	0.013
2/4/15	invalid	invalid 0.013	9	0.006	13	0.007
2/5/15	13		8		11	0.000
2/6/15	12	0.007		0.006		
2/9/15	invalid	invalid	8	0.006	11	0.007
2/10/15	13	0.007	invalid	invalid	13	0.007
2/11/15	17	0.007	12	0.006	13	0.020
2/12/15	16	0.006	11	0.006	13	0.006
2/13/15	25	0.007	21	0.006	26	0.007
2/16/15	15	0.000	15	0.000	12	0.006
2/17/15	19	0.007	10	0.007	16	0.007
2/18/15	17	0.006	15	0.006	21	0.058
2/19/15	20	0.006	20	0.006	18	0.006
2/20/15	7	0.007	3	0.006	5	0.007
2/23/15	22	0.019	23	0.006	22	0.006
2/24/15	25	0.020	16	0.006	20	0.013
2/25/15	21	0.013	23	0.013	18	0.007
2/26/15	21	0.007	12	0.000	14	0.013
2/27/15	16	0.012	9	0.006	14	0.006

Monthly Avg. TSP	16	13	15
Monthly Avg. Pb	0.009	0.006	0.011
Jan-15	0.015	0.008	0.025
Dec-14	0.009	0.005	0.009
Rolling 3-Month	0.011	0.006	0.015

Three month rolling average must be less than 0.15 ug/m3

NOTES:

St. Joe: 2/4, 2/9, <23hr run time Big River #4: 2/10, <23hr run time

	Big Ri	ver QA
Sample Date	TSP ug/m3	Lead ug/m3
	-	
2/3/15	9	0.007
2/5/15	10	0.006
2/10/15	18	0.006
2/12/15	15	0.006
2/17/15	13	0.006
2/19/15	16	0.006
2/24/15	17	0.006
2/26/15		

Rivermines

Sample Results for February-2015

	Big River #4							Rivermines East #3	
	TSP	Lead	TSP	Lead	TSP	Lead	TSP	Lead	
Sample Date	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	
2/2/15	12	0.006	7	0.006	5	0.007	8	0.007	
2/3/15	8	0.006	20	0.013	invalid	invalid	14	0.013	
2/4/15	11	0.000	14	0.013	13	0.007	18	0.007	
2/5/15	9	0.006	21	0.006	13	0.019	13	0.006	
2/6/15	8	0.006	15	0.006	15	0.134	11	0.007	
2/9/15	8	0.006	9	0.006	invalid	invalid	11	0.007	
2/10/15	invalid	invalid	17	0.013	10	0.007	13	0.007	
2/11/15	12	0.006	24	0.065	invalid	invalid	13	0.020	
2/12/15	11	0.006	15	0.006	14	0.007	13	0.006	
2/13/15	21	0.006	26	0.006	19	0.007	26	0.007	
2/16/15	15	0.000	11	0.006	12	0.007	12	0.006	
2/17/15	10	0.007	21	0.013	13	0.007	16	0.007	
2/18/15	15	0.006	15	0.006	12	0.006	21	0.058	
2/19/15	20	0.006	20	0.006	16	0.006	18	0.006	
2/20/15	3	0.006	invalid	invalid	2	0.020	5	0.007	
2/23/15	23	0.006	24	0.012	28	0.013	22	0.006	
2/24/15	16	0.006	17	0.013	17	0.007	20	0.013	
2/25/15	23	0.013	21	0.013	22	0.007	18	0.007	
2/26/15	12	0.000	12	0.007	15	0.007	14	0.013	
	9	0.006	15	0.024	20	0.006	14	0.006	

Monthly Avg. TSP	13	17	14	15
Monthly Avg. Pb	0.006	0.013	0.016	0.011
Jan-15	0.008	0.030	0.025	0.025
Dec-14	0.005	0.023	0.006	0.009
Rolling 3-Month	0.006	0.022	0.016	0.015

Three month rolling average must be less than 0.15 ug/m3

NOTES:

Big River #4: 2/10, <23hr run time Rivermines South: 2/20, >25hr run time

Rivermines North #2: 2/3, <23hrs, timer set wrong by trainee,

2/9, <23hrs, bad bearing, 2/11, >25hr run time

	Big Ri	ver QA
	TSP	Lead
Sample Date	ug/m3	ug/m3
2/3/15	9	0.007
2/5/15	10	0.006
2/10/15	18	0.006
2/12/15	15	0.006
2/17/15	13	0.006
2/19/15	16	0.006
2/24/15	17	0.006

National Site

Sample Results for February-2015

Sample Date 2/2/15 2/3/15 2/4/15 2/5/15 2/6/15 2/9/15	Big Riv TSP ug/m3 12 8 11 9	Lead ug/m3 0.006 0.006 0.000	Ozar TSP ug/m3 13 14	Lead ug/m3 0.006	TSP ug/m3	Lead ug/m3 0.013	TSP ug/m3	Lead ug/m3
2/2/15 2/3/15 2/4/15 2/5/15 2/6/15	12 8 11 9	ug/m3 0.006 0.006	ug/m3 13	ug/m3 0.006	ug/m3	ug/m3	ug/m3	ug/m3
2/3/15 2/4/15 2/5/15 2/6/15	8 11 9	0.006			10	0.013	0	
2/4/15 2/5/15 2/6/15	11 9		14	0.007		0.010	8	0.007
2/5/15 2/6/15	9	0.000		0.007	12	0.013	14	0.013
2/6/15			11	0.006	invalid	invalid	18	0.007
	_	0.006	invalid	invalid	25	0.038	13	0.006
2/9/15	8	0.006	14	0.007	19	0.020	11	0.007
	8	0.006	8	0.000	13	0.007	11	0.007
2/10/15	invalid	invalid	21	0.007	22	0.026	13	0.007
2/11/15	12	0.006	22	0.007	14	0.007	13	0.020
2/12/15	11	0.006	16	0.006	16	0.007	13	0.006
2/13/15	21	0.006	27	0.007	27	0.013	26	0.007
2/16/15	15	0.000	17	0.006	16	0.000	12	0.006
2/17/15	10	0.007	20	0.007	20	0.013	16	0.007
2/18/15	15	0.006	30	0.006	27	0.026	21	0.058
2/19/15	20	0.006	21	0.006	26	0.025	18	0.006
2/20/15	3	0.006	6	0.000	8	0.007	5	0.007
2/23/15	23	0.006	22	0.006	29	0.038	22	0.006
2/24/15	16	0.006	31	0.020	30	0.033	20	0.013
2/25/15	23	0.013	29	0.007	33	0.040	18	0.007
2/26/15	12	0.000	20	0.007	23	0.007	14	0.013
2/27/15	9	0.006	14	0.006	17	0.019	14	0.006

Monthly Avg. TSP	13	19	20	15
Monthly Avg. Pb	0.006	0.006	0.019	0.011
Jan-15	0.008	0.009	0.016	0.025
Dec-14	0.005	0.005	0.008	0.009
Rolling 3-Month	0.006	0.007	0.014	0.015

Three month rolling average must be less than 0.15 ug/m3

NOTES:

Big River #4: 2/10, <23hr run time Ozark #1: 2/5, <23hr run time Soccer Park #2: 2/4, <23hr run time

	Big Ri	ver QA
Sample Date	TSP ug/m3	Lead ug/m3
2/3/15	9	0.007
2/5/15	10	0.006
2/10/15	18	0.006
2/12/15	15	0.006
2/17/15	13	0.006
2/19/15	16	0.006
2/24/15	17	0.006

Leadwood

Sample Results for February-2015

	Big Ri	ver #4	Leadwood	South #1	Leadwoo	d East #2	Leadwood	d North #3
	TSP	Lead	TSP	Lead	TSP	Lead	TSP	Lead
Sample Date	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
2/2/15	12	0.006	7	0.007	8	0.007	12	0.007
2/3/15	8	0.006	10	0.006	11	0.006	11	0.007
2/4/15	11	0.000	13	0.007	12	0.000	12	0.000
2/5/15	9	0.006	13	0.006	12	0.006	9	0.000
2/6/15	8	0.006	16	0.006	12	0.000	9	0.000
2/9/15	8	0.006	15	0.013	10	0.007	8	0.000
2/10/15	invalid	invalid	13	0.006	16	0.013	11	0.007
2/11/15	12	0.006	18	0.013	7	0.000	8	0.000
2/12/15	11	0.006	32	0.026	8	0.007	9	0.000
2/13/15	21	0.006	33	0.006	22	0.006	22	0.007
2/16/15	15	0.000	12	0.006	10	0.000	8	0.000
2/17/15	10	0.007	18	0.006	13	0.006	15	0.000
2/18/15	15	0.006	20	0.019	18	0.006	16	0.006
2/19/15	20	0.006	20	0.025	19	0.006	14	0.006
2/20/15	3	0.006	10	0.006	0	0.000	4	0.000
2/23/15	23	0.006	26	0.032	29	0.013	21	0.007
2/24/15	16	0.006	14	0.019	17	0.006	14	0.007
2/25/15	23	0.013	21	0.026	30	0.013	20	0.007
2/26/15	12	0.000	21	0.032	3	0.000	14	0.000
	9	0.006	18	0.018	17	0.012	13	0.006

Monthly Avg. TSP	13	18	14	13
Monthly Avg. Pb	0.006	0.014	0.006	0.003
Jan-15	0.008	0.011	0.006	0.005
Dec-14	0.005	0.007	0.005	0.004
Rolling 3-Month	0.006	0.011	0.006	0.004

Three month rolling average must be less than 0.15 ug/m3

NOTES:

Big River #4: 2/10, <23hr run time

	TSP	Lead
Sample Date	ug/m3	ug/m3
2/3/15	9	0.007
2/5/15	10	0.006
2/10/15	18	0.006
2/12/15	15	0.006
2/17/15	13	0.006
2/19/15	16	0.006
2/24/15	17	0.006

Federal Site

Sample Results for February-2015

	PM10 (ug/m3)	PM10 (ug/m3)	PM10 (ug/m3)
2/2/15	0	2	1
2/5/15	6	4	8
2/8/15	3	9	8
2/11/15	12	invalid	9
2/14/15	12	11	11
2/17/15	11	12	12
2/20/15	11	10	10
2/23/15	13	12	7
2/26/15	11	invalid	10

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	9	9	9
memory of the great and the			

NOTES:

Big River #4: 2/11, <23hr run time Big River #4: 2/26, >25hr run time

	Big River QA
Sample Date	PM10 (ug/m3)
2/5/15	3
2/11/15	11
2/17/15	13
2/23/15	18

Rivermines

Sample Results for February-2015

Sample Date	Big River #4 PM10 (ug/m3)	Rivermines South #1 PM10 (ug/m3)	Rivermines North #2 PM10 (ug/m3)	Rivermines East # PM10 (ug/m3)
2/2/15	2	5	2	1
2/5/15	4	6	10	8
2/8/15	9	13	10	8
2/11/15	invalid	invalid	9	9
2/14/15	11	14	10	11
2/17/15	12	invalid	10	12
2/20/15	10	16	12	10
2/23/15	12	9	2	7
2/26/15	invalid	10	8	10
			J	

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	9	10	8	9

NOTES:

Big River #4: 2/11, <23hr run time

Big River #4: 2/26, >25hr run time

Rivermines South #1:

2/11, <23hr run time

2/17, <23 hr run time, hour meter failed, new hour meter installed.

	Big River QA
Sample Date	PM10 (ug/m3)
2/5/15	3
2/11/15	11
2/17/15	13
2/23/15	18

National Site

Sample Results for February-2015

Sample Date	Big River #4 PM10 (ug/m3)	Ozark #1 PM10 (ug/m3)	Soccer Park #2 PM10 (ug/m3)	Water Treatmen PM10 (ug/m3)
2/2/15	2	1	2	1
2/5/15	4	1	8	8
2/8/15	9	8	8	8
2/11/15	invalid	14	14	9
2/14/15	11	12	11	11
2/17/15	12	16	15	12
2/20/15	10	10	11	10
2/23/15	12	11	15	7
2/26/15	invalid	9	55	10

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	9	9	16	9

NOTES:

Big River #4: 2/11, <23hr run time Big River #4: 2/26, >25hr run time

	Big River QA
Sample Date	PM10 (ug/m3)
2/5/15	3
2/11/15	11
2/17/15	13
2/23/15	18
2/23/15	18

Leadwood

Sample Results for February-2015

Sample Date	Big River #4 PM10 (ug/m3)	Leadwood South #1 PM10 (ug/m3)	Leadwood East #2 PM10 (ug/m3)	Leadwood North # PM10 (ug/m3)
2/2/15	2	3	5	12
2/5/15	4	6	6	3
2/8/15	9	12	14	10
2/11/15	invalid	11	7	11
2/14/15	11	12	13	12
2/17/15	12	6	15	13
2/20/15	10	9	11	10
2/23/15	12	3	10	15
2/26/15	invalid	4	7	6

Compliance with NAAQS is less than 150 ug/m3

Monthly Avg. PM10	9	7	10	10

NOTES:

Big River #4: 2/11, <23hr run time

Big River #4: 2/26, >25hr run time

PM10 (ug/m3)
3
11
13
18

Meterological Data - Old Lead Belt February-2015

6.0 5.8 5.0 6.5 3.7 5.3 7.6	248 297 206 310 22	22.30 24.19 21.50 20.88	3.5 -6.0 0.2	740 751	0.48	13.6
5.0 6.5 3.7 5.3 7.6	206 310 22	21.50		751		
6.5 3.7 5.3 7.6	310 22		0.2		0	13.81
3.7 5.3 7.6	22	20.88	0.2	750	0	13.78
5.3 7.6		_5.00	1.2	750	0	13.70
7.6		32.10	-7.2	757	0.02	13.87
	203	18.86	2.3	750	0	13.74
	196	17.70	9.3	742	0	13.57
6.8	254	18.13	13.3	739	0	13.47
8.0	352	17.06	2.3	748	0	13.65
2.9	79	34.99	-0.3	749	0	13.72
5.7	299	21.58	0.4	749	0	13.73
7.6	336	19.92	-5.4	755	0	13.79
4.7	201	19.98	-2.1	751	0	13.80
7.1	321	24.74	-1.4	750	0	13.76
5.5	70	24.58	-9.2	756	0	13.95
4.7	3	17.37	-8.5	749	0	13.91
3.2	244	22.84	-5.9	746	0.01	13.90
6.9	299	18.34	-9.7	750	0	13.85
3.5	253	27.17	-12.9	756	0	13.95
6.1	168	24.92	-6.5	749	0	13.91
2.0	321	12.02	0.4	745	0.42	13.81
8.0	352	17.61	-2.8	756	0.04	13.80
5.9	28	25.19	-10.0	761	0	13.93
4.4	230	20.72	-3.0	747	0.27	13.84
2.7	146	26.63	-1.4	743	0	13.84
7.6	. 335	18.78	-5.1	750	0	13.86
3.9	23	29.50	-10.1	760	0	13.95
3.5	102	25.05	-5.4	759	0	13.90
	4.4 2.7 7.6 3.9	4.4 230 2.7 146 7.6 335 3.9 23	4.4 230 20.72 2.7 146 26.63 7.6 335 18.78 3.9 23 29.50	4.4 230 20.72 -3.0 2.7 146 26.63 -1.4 7.6 335 18.78 -5.1 3.9 23 29.50 -10.1	4.4 230 20.72 -3.0 747 2.7 146 26.63 -1.4 743 7.6 335 18.78 -5.1 750 3.9 23 29.50 -10.1 760	4.4 230 20.72 -3.0 747 0.27 2.7 146 26.63 -1.4 743 0 7.6 335 18.78 -5.1 750 0 3.9 23 29.50 -10.1 760 0

March 2, 2015

Mr. Greg Henson Chemist The Doe Run Company 881 Main Street Herculaneum, Missouri 63048

RE: 1st Quarter 2015 Lead/PM10 Samplers and Meteorological System Performance Audit Report.

Dear Mr. Henson,

Please find enclosed the worksheets detailing the Lead/PM10 sampler's one-point flow verifications and meteorological sensors accuracy checks that were recently performed on the Doe Run Park Hills Monitoring Network. A copy of the current certifications for the audit devices that were used has also been enclosed.

All of the verifications and checks were found to be within expected guidelines.

After reviewing the enclosed information, please feel free to call with any comments or questions. Thank you for your business.

Sincerely,

John A. Kunkel

Inquest Environmental, Inc.

PM10 Sampler Verifications

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood (Mill St.)	Intercept (Qa)	-0.00876			
Sampler	#2 PM10	Temperature	11.0	°C	284.2	°K
Flow Controller	P1018	Station Pressure	30.04	"Hg	763.0	mmHg

n division die die e n kommunicate die ein e	e de la lacidad de la compaña de la comp La compaña de la compaña d	Carlo Alla Pari I (C.) Alla Mari Pari I (C.)	Flow Ra	te Audit	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	CH MANAGER AND	POPULATION OF THE PARTY OF THE
Transfer Orifice		Sampler			Flow Rate		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range
3.20	1.057	23.80	44.45	0.942	1.127	6.62	± 7%

Manometer	Pressure	Press. Ratio	Flow Rate	Corrected	Design %	Acceptable
"H ₂ O	(Pf)	(Po/Pa)	m³/min	Flow Rate	Difference	Range
23.70	44.26	0.942	1.127	1.052	-6.90	± 10%

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood (School)	Intercept (Qa)	-0.00876			
Sampler	#3 PM10	Temperature	11.0	°C	284.2	°K
Flow Controller	P6071	Station Pressure	30.04	_"Hg	763.0	mmHg
-						

the first of the set of the	FALL TO BY 14 10 -400 49 50 75 75		Flow Ra	te Audit	5月世紀 -	er of the second	THE PROPERTY AND ADDRESS.
Transfe	Transfer Orifice Sampler		Sampler			Flow Rate	Assentable
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range
3.30	1.073	23.10	43.14	0.943	1.138	6.06	± 7%

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.00	42.96	0.944	1.139	1.070	-5.31	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood (South)	Intercept (Qa)	-0.00876			
Sampler	#1 PM10	Temperature	11.0	_°C	284.2	°K
Flow Controller	P1500	Station Pressure	30.03	_"Hg	762.8	mmHg

No Calabillati		5. 光春散 2四	Flow Ra	te Audit	人 使 医		THE PART CHARGE		
Transfe	ransfer Orifice Sampler				Transfer Orifice Sampler			Flow Rate	At
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.057	24.00	44.82	0.941	1.125	6.43	± 7%		

Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.80	44.45	0.942	1.126	1.054	-6.73	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Big River	Intercept (Qa)	-0.00876			
Sampler	#4 Primary PM10	Temperature	11.0	_°C	284.2	°K
Flow Controller	P2952	Station Pressure	30.05	_"Hg	763.3	mmH

PANEL	1911115 24-1		Flow Ra	ate Audit		5 中海基 14 b	SHAME.
Transfer	r Orifice	Sampler				Flow Rate	A
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range
3.20	1.057	23.90	44.64	0.942	1.113	5.30	± 7%

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.60	44.08	0.942	1.113	1.054	-6.73	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

January 20, 2015	Auditor	John Kunke	el		
The Doe Run Company	Transfer Orifice	1882			
Park Hills Network	Slope (Qa)	1.04094			
Big River	Intercept (Qa)	-0.00876			
#4 QA PM10	Temperature	11.0	°C	284.2	°K
P1019	Station Pressure	30.05	"Hg	763.3	mmHg
	The Doe Run Company Park Hills Network Big River #4 QA PM10	The Doe Run Company Park Hills Network Slope (Qa) Big River Intercept (Qa) #4 QA PM10 Temperature	The Doe Run Company Transfer Orifice 1882 Park Hills Network Slope (Qa) 1.04094 Big River Intercept (Qa) -0.00876 #4 QA PM10 Temperature 11.0	The Doe Run Company Park Hills Network Slope (Qa) 1.04094 Big River Intercept (Qa) -0.00876 #4 QA PM10 Temperature 11.0 °C	The Doe Run Company Park Hills Network Slope (Qa) 1.04094 Big River Intercept (Qa) -0.00876 #4 QA PM10 Temperature 11.0 °C 284.2

	Flow Rate Audit									
Transfer Orifice		Sampler				Flow Rate	A			
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range			
3.30	1.073	24.40	45.57	0.940	1.124	4.75	± 7%			

TO MINE TO SERVE	Sampler Operating Flow Rate									
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range				
24.50	45.76	0.940	1.124	1.071	-5.22	± 10%				

Calculations:

Flow

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

D	ate	January 20, 2015	Auditor	John Kunk	el		
Opera	tor	The Doe Run Company	Transfer Orifice	1882			
Locat	ion	Park Hills Network	Slope (Qa)	1.04094			
Stat	ion	Hanley Park/Crane St.	Intercept (Qa)	-0.00876			
Samp	oler	#2 PM10	Temperature	10.0	°C	283.2	°K
Flow Contro	ller	P2949	Station Pressure	30.04	"Hg	763.0	mmHg

Flow Rate Audit									
Transfe	r Orifice	Sampler				Flow Rate	A		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.055	23.20	43.33	0.943	1.109	5.12	± 7%		

Sampler Operating Flow Rate									
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range			
23.10	43.14	0.943	1.109	1.052	-6.90	± 10%			

Calculations:

Pressure mmHg (Pf) - ("H₂O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	St Joe Park	Intercept (Qa)	-0.00876			
Sampler	#4 PM10	Temperature	10.0	°C	283.2	°K
Flow Controller	P4353	Station Pressure	30.03	"Hg	762.8	mmHg

Flow Rate Audit										
Transfe	r Orifice	Sampler				Flow Rate				
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range			
3.10	1.039	23.50	43.89	0.942	1.102	6.06	± 7%			

Sampler Operating Flow Rate								
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.60	44.08	0.942	1.102	1.035	-8.41	± 10%		

Calculations:

Pressure mmHg (Pf) -("H₂O/13.6)*25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Wtr Plnt)	Intercept (Qa)	-0.00876			
Sampler	#3 PM10	Temperature	10.0	_°C	283.2 °	K
Flow Controller	P2951	Station Pressure	30.04	_"Hg	763.0 n	nmHg

Flow Rate Audit									
Transfer	Orifice		Sampler				Assentable		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Flow Rate Percent Difference	Acceptable Range		
3.20	1.055	23.10	43.14	0.943	1.116	5.78	± 7%		

Sampler Operating Flow Rate									
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range			
23.30	43.52	0.943	1.116	1.051	-6.99	± 10%			

Calculations:

Pressure mmHg (Pf) -("H₂O/13.6)*25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		-
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Quarry)	Intercept (Qa)	-0.00876			
Sampler	#1 PM10	Temperature	10.0	°C	283.2	°K
Flow Controller	P4601	Station Pressure	30.04	"Hg	763.0	mmHg

	I HHEE		Flow Ra	te Audit	SL WE THAT I W	F FACE THE SHEEPERS I	
Transfer Orifice			Sampler			Flow Rate	
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range
3.20	1.055	23.20	43.33	0.943	1.088	3.13	± 7%

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.20	43.33	0.943	1.088	1.054	-6.73	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H2O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

January 20, 2015	Auditor	John Kunk	el		
The Doe Run Company	Transfer Orifice	1882			
Park Hills Network	Slope (Qa)	1.04094			
Rivermines (Above Quarry)	Intercept (Qa)	-0.00876			
#2 PM10	Temperature	10.0	_°C	283.2	°K
P4507	Station Pressure	30.04	_"Hg	763.0	mmHg
	January 20, 2015 The Doe Run Company Park Hills Network Rivermines (Above Quarry) #2 PM10 P4507	The Doe Run Company Park Hills Network Rivermines (Above Quarry) Slope (Qa) Intercept (Qa) #2 PM10 Temperature	The Doe Run Company Park Hills Network Rivermines (Above Quarry) Slope (Qa) 1.04094 Temperature 10.0	The Doe Run Company Park Hills Network Rivermines (Above Quarry) Slope (Qa) Intercept (Qa) Temperature 10.0 C	The Doe Run Company Park Hills Network Rivermines (Above Quarry) #2 PM10 Transfer Orifice 1882 1.04094 Intercept (Qa) -0.00876 Temperature 10.0 °C 283.2

AND SELECT AND AND SELECT	n yakin hikili ikin bad parang asan mga swa		Flow Ra	ite Audit	E POR S	地 类的特性适合。	主題は音量
Transfe	r Orifice	Sampler			Flow Rate	Assentable	
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range
3.20	1.055	23.30	43.52	0.943	1.108	5.02	± 7%

THE SECOND	Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range			
23.40	43.70	0.943	1.108	1.052	-6.90	± 10%			

Calculations:

Pressure mmHg (Pf) - ("H2O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

January 20, 2015	Auditor	John Kunke	el		
The Doe Run Company	Transfer Orifice	1882			
Park Hills Network	Slope (Qa)	1.04094			
Ozark Insul. (National)	Intercept (Qa)	-0.00876			
#1 PM10	Temperature	10.0	°C	283.2 °K	
P2950	Station Pressure	30.04	"Hg	763.0 mm	ιНε
	January 20, 2015 The Doe Run Company Park Hills Network Ozark Insul. (National) #1 PM10 P2950	The Doe Run Company Park Hills Network Ozark Insul. (National) Intercept (Qa) Temperature	The Doe Run Company Transfer Orifice 1882 Park Hills Network Slope (Qa) 1.04094 Ozark Insul. (National) Intercept (Qa) -0.00876 #1 PM10 Temperature 10.0	The Doe Run Company Park Hills Network Ozark Insul. (National) #1 PM10 Transfer Orifice 1882 1.04094 1.04094 1.04094 Temperature 10.0 C	The Doe Run Company Park Hills Network Ozark Insul. (National) Transfer Orifice Slope (Qa) 1.04094 Intercept (Qa) -0.00876 #1 PM10 Temperature 10.0 °C 283.2 °K

Flow Rate Audit									
Transfe	Transfer Orifice		Sampler			Flow Rate	Accountable		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Percent Difference	Acceptable Range		
3.20	1.055	23.30	43.52	0.943	1.112	5.40	± 7%		

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Design % Difference	Acceptable Range		
23.20	43.33	0.943	1.112	1.052	-6.90	± 10%		

Calculations:

Pressure mmHg (Pf) - ("H2O/13.6) * 25.4

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Flow Rate Percent Difference- (Sampler Flow-Orifice Flow)/Orifice Flow*100

Corrected Flow Rate - Operating Flow*((100-Percent Difference)/100)

Lead/TSP Sampler Verifications

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Big River Primary	Intercept (Qa)	-0.00876			
Sampler	#4 TSP	Temperature	10.0	°C	283.2	°K
Flow Controller	P4557	Station Pressure	30.03	"Hg	762.8	mmHg

		多理题表 法	Flow Ra	ate Audit		Maria de Caración de Artes de	k site (in g) As
Transfer	r Orifice		San	npler		Calibration	A t - t -
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.80	1.149	23.80	44.47	0.942	1.205	4.87	± 7%

Sampler Operating Flow Rate									
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range				
24.10	45.03	0.941	1.204	1.145	1.10 - 1.70				

Calculations:

Pressure mmHg (Pf) - "H2O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Big River QA	Intercept (Qa)	-0.00876			
Sampler	#4 TSP	Temperature	10.0	°C	283.2	°K
Flow Controller	P4558	Station Pressure	30.03	_"Hg	762.8	mmHg

Flow Rate Audit									
Transfer	Orifice		San	npler		Callbankina	A		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range		
3.80	1.149	23.50	43.91	0.942	1.201	4.53	± 7%		

Sampler Operating Flow Rate									
Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range				
23.60	44.09	0.942	1.201	1.147	1.10 - 1.70				

Calculations:

Pressure mmHg (Pf) - "H2O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood Mill St.	Intercept (Qa)	-0.00876			
Sampler	#2 TSP	Temperature	11.0	_°C	284.2	°K
low Controller	P4476	Station Pressure	30.04	"Hg	763.0	mmHg

Flow Rate Audit										
Transfer Orifice			Sampler			0 111 11				
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range			
3.70	1.136	23.10	43.16	0.943	1.196	5.28	± 7%			

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range			
23.10	43.16	0.943	1.196	1.133	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

January 20, 2015	Auditor	John Kunk	el		
The Doe Run Company	Transfer Orifice	1882			
Park Hills Network	Slope (Qa)	1.04094	12		
Leadwood School	Intercept (Qa)	-0.00876			
#3 TSP	Temperature	11.0	°C	284.2	°K
P6793	Station Pressure	30.04	_"Hg	763.0	mmHg
	January 20, 2015 The Doe Run Company Park Hills Network Leadwood School #3 TSP P6793	The Doe Run Company Park Hills Network Leadwood School #3 TSP Transfer Orifice Slope (Qa) Intercept (Qa) Temperature	The Doe Run Company Park Hills Network Leadwood School #3 TSP Transfer Orifice 1882 Slope (Qa) 1.04094 Intercept (Qa) -0.00876 Temperature 11.0	The Doe Run Company Park Hills Network Leadwood School #3 TSP Transfer Orifice 1882 1.04094 Intercept (Qa) -0.00876 Temperature 11.0 °C	The Doe Run Company Park Hills Network Leadwood School #3 TSP Transfer Orifice 1882 1.04094 Leadwood School Intercept (Qa) -0.00876 Temperature 11.0 °C 284.2

解 2.5 1 1 1		HIVE E	Flow Ra	ate Audit	MICHAEL TO THE	属的特色	F 20 5 1 G 10 1
Transfer	Orifice		Sar	npler		Calibration	Assentable
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.70	1.136	23.60	44.09	0.942	1.192	4.93	± 7%

Sampler Operating Flow Rate									
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range				
23.50	43.91	0.942	1.192	1.133	1.10 - 1.70				

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Leadwood South	Intercept (Qa)	-0.00876			
Sampler	#1 TSP	Temperature	11.0	°C	284.2	°K
Flow Controller	P4559	Station Pressure	30.04	"Hg	763.0	mmHg

Flow Rate Audit									
Transfe	r Orifice		Sam	npler		Calibardian	A		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H₂O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range		
3.70	1.136	23.70	44.28	0.942	1.211	6.60	± 7%		

Sampler Operating Flow Rate									
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range				
23.70	44.28	0.942	1.211	1.131	1.10 - 1.70				

Calculations:

Pressure mmHg (Pf) - "H2O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	St Joe Park	Intercept (Qa)	-0.00876			
Sampler	#4 TSP	Temperature	10.0	°C	283.2	°K
Flow Controller	P6792	Station Pressure	30.03	_"Hg	762.8	mmHg

Flow Rate Audit									
Transfer	r Orifice		Sampler			Calibration	Assessable		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range		
3.70	1.134	23.20	43.35	0.943	1.198	5.64	± 7%		

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range			
23.30	43.53	0.943	1.198	1.130	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor_	John Kunk	el		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Hanley Park (National)	Intercept (Qa)	-0.00876			
Sampler	#2 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P4474	Station Pressure	30.04	_"Hg	763.0	mmHg

	Flow Rate Audit									
Transfer Orifice		Sampler		C-I'l						
Manometer "H₂O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range			
3.60	1.119	23.40	43.72	0.943	1.189	6.26	± 7%			

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range			
23.60	44.09	0.942	1.187	1.113	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

January 20, 2015	Auditor	John Kunk	el		
The Doe Run Company	Transfer Orifice	1882			
Park Hills Network	Slope (Qa)	1.04094			
Rivermines (Water Plant)	Intercept (Qa)	-0.00876			
TSP	Temperature	10.0	_°C	283.2	°K
P4475	Station Pressure	30.04	_"Hg	763.0	mmHg
	Park Hills Network Rivermines (Water Plant)	The Doe Run Company Park Hills Network Rivermines (Water Plant) TSP Transfer Orifice Slope (Qa) Intercept (Qa) Temperature	The Doe Run Company Park Hills Network Rivermines (Water Plant) TSP Transfer Orifice 1882 1.04094 1.04094 Transfer Orifice 1882 1.04094 1.04094 Transfer Orifice 1882 1.04094 1.04094 1.04094 1.04094 1.04094	The Doe Run Company Park Hills Network Rivermines (Water Plant) Transfer Orifice Slope (Qa) 1.04094 Intercept (Qa) -0.00876 Temperature 10.0 °C	The Doe Run Company Park Hills Network Rivermines (Water Plant) TSP Transfer Orifice 1882 1.04094 Intercept (Qa) -0.00876 Temperature 10.0 °C 283.2

EN E X EY	を は は は は は は に は に に に に に に に に に に に に に	1 1 1 1 A 34	Flow Ra	ate Audit		新教 對 数	4.44
Transfer Orifice			Sampler			Calibaatiaa	A
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.70	1.134	23.20	43.35	0.943	1.195	5.38	± 7%

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range			
23.20	43.35	0.943	1.195	1.131	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) - "H2O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el .		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Rivermines (Quarry)	Intercept (Qa)	-0.00876			
Sampler	#1 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P2940	Station Pressure	30.04	"Hg	763.0	mmHg

Flow Rate Audit								
Transfer Orifice		Sampler			C-171			
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range	
3.60	1.119	23.90	44.65	0.941	1.197	6.97	± 7%	

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range			
23.90	44.65	0.941	1.197	1.114	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) - "H₂O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	el	
Operator	The Doe Run Company	Transfer Orifice	1882		
Location	Park Hills Network	Slope (Qa)	1.04094		
Station	Rivermines (Above Quarry)	Intercept (Qa)	-0.00876		
Sampler	#2 TSP	Temperature	10.0	_°C	283.2 °K
Flow Controller	P2941	Station Pressure	30.04	_"Hg	763.0 mmHg

CONTRACTOR OF	California (Mil. 1).	22 杜联 作员	Flow Ra	ate Audit	SS SE SEE BUILD		明显主义建
Transfer Orifice		Orifice Sampler		Calibration	Accomtoble		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.70	1.134	23.70	44.28	0.942	1.200	5.82	± 7%

Sampler Operating Flow Rate								
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range			
23.60	44.09	0.942	1.200	1.130	1.10 - 1.70			

Calculations:

Pressure mmHg (Pf) $- "H_2O * 1.86832$

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

3609 Mojave Court, Suite E Columbia, Missouri 65202 573-474-8110

Date	January 20, 2015	Auditor	John Kunke	<u> </u>		
Operator	The Doe Run Company	Transfer Orifice	1882			
Location	Park Hills Network	Slope (Qa)	1.04094			
Station	Ozark Insul (National)	Intercept (Qa)	-0.00876			
Sampler	#1 TSP	Temperature	10.0	_°C	283.2	°K
Flow Controller	P2939	Station Pressure	30.04	"Hg	763.0	mmHg

	に 別 間で た 左 に 味 那 間 特 単	第一个心室的	Flow Ra	te Audit	275 PAR 4 B	實際 医原状	
Transfer Orifice Sampler		Transfer Orifice Sampler			0 111 -11		
Manometer "H ₂ O	Flow Rate m³/min	Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Calibration Error %	Acceptable Range
3.80	1.149	23.00	42.97	0.944	1.201	4.53	± 7%

Sampler Operating Flow Rate							
Manometer "H ₂ O	Pressure (Pf)	Press. Ratio (Po/Pa)	Flow Rate m³/min	Corrected Flow Rate	Acceptable Range		
22.90	42.78	0.944	1.204	1.150	1.10 - 1.70		

Calculations:

Pressure mmHg (Pf) - "H2O * 1.86832

Pressure Ratio (Po/Pa) - 1-Pf/Pa

Orifice Flow Rate (Qa) - 1/Slope*(Sqrt("H2O*(Ta/Pa))-Intercept)

Sampler Flow Rate (Qa) - Taken from the look-up tables

Calibration Error - (Sampler Flow-Orifice Flow)/Orifice Flow*100

Calibration Orifice Certification Worksheet

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5028A

		an 13, 2015 Tisch	Rootsmeter Orifice I.I	- /	833620 <u>.</u> 1882	Ta (K) - Pa (mm) -	292 765.81
C	ATE R C #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2C (in.)
	1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00	1.3360 1.0560 0.9570 0.8870 0.6670	4.3 6.8 8.2 9.5 16.5	1.50 2.50 3.00 3.50 6.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)	
1.0225 1.0191 1.0173 1.0155 1.0061	0.7654 0.9651 1.0630 1.1449 1.5084	1.2420 1.6034 1.7564 1.8972 2.4840		0.9943 0.9910 0.9892 0.9875 0.9784	0.7443 0.9385 1.0337 1.1133 1.4668	0.7563 0.9763 1.0695 1.1552 1.5125	
Qstd slo intercep coeffici	t (b) =	1.66236 -0.01438 0.99927		Qa slope intercept coefficie	= (b) $=$	1.04094 -0.00876 0.99927	
y axis =	SQRT[H20(I	Pa/760) (298/7	 [a)]	y axis =	SQRT[H20(T	[a/Pa)]	

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Meteorological Sensor's Accuracy Checks

Wind Direction Sensor Performance Audit

Operator The Doe Run Co Big River Location Station Name Meteorological System J Kunkel / M Kunkel Technician Sensor Mfg RM Young Wind Monitor AQ Sensor Model 128618 Serial Number Sensor Height 10.0 Meters

 Date
 01/15/2015

 Start Time
 07:45

 Stop Time
 08:45

Station Declination1.1DegMeasured Angle180.0DegCorrected Angle181.1DegAlignment Error-1.1Deg

Vane	Data	Results		
Angle Degrees	Logger Degrees	Difference ± 3 Deg Limit	Total Error ± 5 Deg Limit	
0/360	0.9	0.9	-0.2	
90	90.4	0.4	-0.7	
180	180.5	0.5	-0.6	
270	271.4	1.4	0.3	

Average Difference (Degre	es) 0.8
Average Total Error (Degre	es) -0.3

Audit Device	Wind Vane Alignment	Direction		
Туре	Pocket Transit	Vane Angle Fixture		
Mfg.	Brunton	R.M. Young		
Model	5008	18212		
Serial No.	5080304492	None		

Comments: Wind direction was verified by determining the orientation of the sensor in respect to True North. This was measured using a tri-pod mounted transit aligned along the length of the sensor while locked from rotating.

A magnetic declination of 1.1 degrees was used to determine True North. The linearity of the sensor was determined by aligning the sensor to an indexed test fixture provided by the manufacturer. The four cardinal directions were verified using the fixture. No adjustments were made to the sensor.

Wind Speed Sensor Performance Audit

 Operator
 The Doe Run Co

 Location
 Big River

 Station Name
 Meteorological System

 Auditor(s)
 J Kunkel / M Kunkel

Date 01/15/2015
Start Time 07:45
Stop Time 08:45

Sensor Mfg RM Young
Sensor Model Wind Monitor AQ
Serial Number 128618
Sensor Height 10.0 Meters

± (0.25 m/s + 5%)

Audit Standard		DASR	DAS Response		
RPM	M/S	M/S	Difference	M/S	
Zero	0.00	0.00	0.00	0.25	
300	1.54	1.53	-0.01	0.25	
600	3.07	3.07	0.00	0.25	
1200	6.14	6.14	0.00	0.56	
1800	9.22	9.22	0.00	0.71	
3600	18.43	18.44	0.01	1.17	
5400	27.65	27.63	-0.02	1.63	
7200	36.86	36.85	-0.01	2.09	
	Average		0.00		

Audit Device	Anemometer Drive		
Туре	Variable Speed		
Mfg.	R.M. Young		
Model	18801		
Serial No.	CAO1631		

Comments: Wind speed was verified using a variable speed anemometer drive. The propellor was removed from the sensor and the drive was connected using a flexible connector. The sensor was then rotated in the appropiate direction at several different speeds. Sensor responses were taken from the data logger. No adjustments were made to the sensor.

Temperature Sensor Performance Audit

Operator The Doe Run Co
Location Big River
Station Name Meteorological System
Technician J Kunkel / M Kunkel

Date 01/15/2015
Start Time 07:45
Stop Time 08:45

Sensor Information

Sensor Mfg	Climatronics
Sensor Model	NA
Serial Number	NA
Sensor Height	2 meters

Audit Device	Sensor		
°C	Data Logger °C	Difference °C	
-0.8	-0.9	-0.1	
29.1	29.0	-0.1 -0.2	
55.9	55.7		
	Average	-0.1	

Note: The limit for each point is +/- 0.5 °C

Audit Device				
Туре	Digital Thermometer			
Mfg.	Control Company			
Model	15-077-8			
Serial No.	221381404			

Comments: The temperature is verified by co-locating the sensor with a certified digital thermometer. The verification is conducted at three levels using two water baths (iced and hot water) and the ambient temperature.

The sensor error was determined by comparing the sensor's data logger response to the display on the certified digital thermometer. No adjustments were made to the sensor.

Barometric Pressure Sensor Performance Audit

Operator The Doe Run Co
Location Big River
Station Name Meteorological System
Technician J Kunkel / M Kunkel

Date 01/15/2015
Start Time 07:45
Stop Time 08:45

 Sensor Mfg
 Setra

 Sensor Model
 276

 Serial Number
 2626447

	Data Logger Response		
Audit Device mm HG	BP mm HG	Difference mm HG	
747.10	750.40	3.30	

Note: Limit is +/- 7.5 mm HG.

	Audit Device
Туре	Digital Barometer
Mfg.	AIR
Model	AIR-HB-1A
Serial No.	6G3745

Comments: The barometric pressure is verified by co-locating the sensor with a certified digital barometer. The verification was conducted at one level after allowing the sensor and calibration device ample time to stabilize.

The sensor error was determined by comparing the sensor's data logger response to the display on the certified digital barometer. No adjustments were made to the sensor.

Precipitation Gauge Performance Audit

Operator The Doe Run Co
Location Big River
Station Name Meteorological System
Technician J Kunkel / M Kunkel

Date 01/15/2015
Start Time 07:45
Stop Time 08:45

 Sensor Mfg
 Texas Electronics

 Sensor Model
 TR525I

 Serial Number
 36611-805

 Diameter (inches)
 6.00

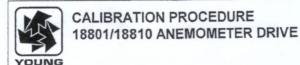
	Data Logger Response		
Audit Device Known Tips	Gauge Tips	Difference %	
96.00	93.00	-3.13	

Note: Limit is +/- 10%.

Audit Device				
Туре	Graduated Beaker			
Mfg.	Texas Instruments			
Model	FC-525			
Serial No.	NA			

Comments: The precipitation gauge output was verified using a field calibration kit supplied by the manufacturer. The kit consists of a graduated beaker and a calibration funnel using a precision orifice at the water outlet.

Water was measured in the beaker and poured into the funnel while mounted on the gauge. The amount of precipitation recorded by the data logger was then compared to the known amount of water passing through the funnel. 100 tips equals one inch of rainfall. The gauge was cleaned and no adjustments were made.


Meteorological Audit Devices Certifications

BRUNTON OUTDOOR GROUP

CERTIFICATE OF CALIBRATION

Equipment Owner

Name:	Inquest Environmental Mitch Kunkel
Address:	Inquest Environmental Mitch Kunkel 3609 Majeve Court, Ste E
	Columbia, MO 65207
Calibration t	traceable to the National institute of Standards and Technology in accordance with MIL-
	has been accomplish on the instrument listed below by comparison with standards
	by the Brunton Outdoor Group. The accuracy and stability of all standards maintained by Outdoor Group are traceable to national standards maintained by the National Institute
	s and Technology in Washington, D.C. and Boulder, CO. Completed record of all work
	s maintained by the Brunton Outdoor Group and is available for inspection upon request.
This unit has	been calibrated to Lietz TM10E serial number 30937 traceable to N.B.S. Number
	this <u>fuly</u> Day 30 20 14.
Description	Pocket Transit
Purchase Ord	der _25643 0329
Order Numbe	er <u>50-070367</u>
Model Numb	er <u>F-3008</u>
Serial Numbe	5080304492
Calibration Da	ate
Recalibration	Date 7/30/15
Signed _	lis Alygella, 2/30/14
Quality Contro	ol Coordinator

DWG: CP18801(A)

BY: TJT

REV: C101107 PAGE: 2 of 4 DATE: 10/11/07

CHK: JC

W.C. GAS-12

CERTIFICATE OF CALIBRATION AND TESTING

MODEL:

18801 (Comprised of Models 18820 Control Unit & 18830 Motor Assembly)

SERIAL NUMBER:

CA01631

R. M. Young Company certifies that the above equipment was inspected and calibrated prior to shipment in accordance with established manufacturing and testing procedures. Standards established by R.M. Young Company for calibrating the measuring and test equipment used in controlling product quality are traceable to the National Institute of Standards and Technology.

Nominal Motor Rpm	Output Frequency Hz (1)	Calculated Rpm (2)	Indicated Rpm (3)
600	320	600	600
1200	640	1206	1200
2400	1280	2400	2400
4200	2240	4200	4200
6,000	3200	6000	6000
8,100	4320	8100	8100
9,900	5280	9900	9900

(1) (2) (3)	Frequency of	t the optical encoder outpubutput produces 32 pulses the Control Unit LCD disp	per revolution of moto	r shaft.
	* Indicates	out of tolerance		
X	No Calibration	Adjustments Required	As Found	☐ As Left
Trace	able frequency	meter used in calibration	Model: DP5740	SN: 4863
	of inspection ction Interval	16 Dec. 2014 One Year		
			Tested	By <u>EC</u>

Filename: CP18801(A).doc

Calibration complies with ISO/IEC 17025, ANSI/NCSL Z540-1, and 9001

Cert. No.: 4000-5872220

Traceable® Certificate of Calibration for Digital Thermometer

Cust ID:Inquest Environmental Inc., 3609 Mojave Ct. Suite E, Attn. Mitchell Kunkel, Columbia, MO 65202 U.S.A. (RMA:986002) Instrument Identification:

Model Numbers: 15-077-8, FB50266, 245BY S/N: 221381404 Manufacturer: Control Company

Model: 15-077-7

S/N: 51202300

Standards/Equipment:

Description	Serial Number	Due Date	NIST Traceable Reference
Temperature Calibration Bath TC-179	A45240		
Thermistor Module	A17118	2/24/15	1000351744
Temperature Probe	128	3/12/15	15-CJ73J-4-1
Temperature Calibration Bath TC-218	A73332		
Thermistor Module	A27129	10/25/14	1000346002
Temperature Probe	5202	11/30/14	15-B15PW-1-1
Temperature Calibration Bath TC-256	B01375		
Thermistor Module	A27129	10/25/14	1000346002
Temperature Probe	5267	10/19/15	15-CD5J7-1-1

Certificate Information:

Technician: 68
Test Conditions:

Procedure: CAL-06

22.5°C

cedure: CAL-06 50.0 %RH 1007 mBar Cal Date: 4/14/14

Cal Due: 4/14/15

Calibration Data:

Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Max	±U	TUR
°C	0.000	0.106	N	0.000	-0.001	Y	-0.050	0.050	0.013	3.8:1
°C	25.001	25.097	N	25.001	24.999	Y	24.951	25.051	0.023	2.2:1
°C	60.000	60.103	N	60.000	60.000	Y	59.950	60.050	0.014	3.6:1
°C	100.004	100.082	N	100.004	99.997	Y	99.954	100.054	0.018	2.8:1
	°C °C	°C 0.000 °C 25.001 °C 60.000	°C 0.000 0.106 °C 25.001 25.097 °C 60.000 60.103	°C 0.000 0.106 N °C 25.001 25.097 N °C 60.000 60.103 N	°C 0.000 0.106 N 0.000 °C 25.001 25.097 N 25.001 °C 60.000 60.103 N 60.000	°C 0.000 0.106 N 0.000 -0.001 °C 25.001 25.097 N 25.001 24.999 °C 60.000 60.103 N 60.000 60.000	°C 0.000 0.106 N 0.000 -0.001 Y °C 25.001 25.097 N 25.001 24.999 Y °C 60.000 60.103 N 60.000 60.000 Y	°C 0.000 0.106 N 0.000 -0.001 Y -0.050 °C 25.001 25.097 N 25.001 24.999 Y 24.951 °C 60.000 60.103 N 60.000 60.000 Y 59.950	°C 0.000 0.106 N 0.000 -0.001 Y -0.050 0.050 °C 25.001 25.097 N 25.001 24.999 Y 24.951 25.051 °C 60.000 60.103 N 60.000 60.000 Y 59.950 60.050	°C 0.000 0.106 N 0.000 -0.001 Y -0.050 0.050 0.013 °C 25.001 25.097 N 25.001 24.999 Y 24.951 25.051 0.023 °C 60.000 60.103 N 60.000 60.000 Y 59.950 60.050 0.014

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurement Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max=Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Aid Rodriguez Nicol Rodriguez, Quality Manager

Aaron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Digital Thermometer should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Digital Thermometers change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company

CONTROL COMPANY 4455 Rex Road Friendswood, TX 77546 USA Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01
Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA.
International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Page 1 of 1

Traceable® is a registered trademark of Control Company

© 2009 Control Company

ASS INSTRUMENT CORPORATION

6711 OLD BRANCH AVENUE . CAMP SPRINGS, MD 20748-6990 . (301) 449-5454 . FAX (301) 449-5455

CALIBRATION REPORT

BAROMETER/ALTIMETER AIR Model AIR-HB-1A Serial No. 6G3745

TEST	TEST PRESSURE	DIGITAL READOUT	READOUT ERROR	CORRECTION REQUIRED
1	930.00	931.9	+1.9	-1.9
2	970.00	971.9	+1.9	-1.9
3	1010.00	1012.0	+2.0	-2.0
4	1050.00	1051.9	+1.9	-1.9
5	1018.01	1019.9	+1.9	-1.9

NOTES:

- 1. All data are in Millibars (hPA) and were taken at 75 F (24 C).
- 2. To correct the Digital Readout of the instrument, either algebraically add the CORRECTION REQUIRED to, or algebraically subtract the READOUT ERROR from, the readout shown on the instrument.
- 3. The TEST PRESSURE was generated using Type A-1 Barometer S/N 3327, and was approached in an increasing-pressure direction.
- 4. The TEST PRESSURE for TEST POINT 5 was ambient atmospheric pressure.
- 5. The BAROMETER/ALTIMETER was horizontal during the calibration.
- 6. The LCD screen of the BAROMETER/ALTIMETER has some trash in the center of the display, but it does not interfer with the
- 7. Although the Digital Readout of the instrument can be adjusted to incorporate the average CORRECTION REQUIRED, this has not been done.

Calibration Date: 5 February 2014

Bernard I. Hass

(SEAL)